

EINFÜHRUNG

Seit den Anfängen der modernen Computertechnik Mitte des 20. Jahrhunderts ist der Bedarf an der Speicherung, Verarbeitung und Übermittlung riesiger Datenmengen exponentiell gestiegen. Von den ersten rudimentären Mainframes bis zu den heutigen hypervernetzten digitalen Ökosystemen sind Daten zum Rückgrat unserer globalen Wirtschaft und unseres täglichen Lebens geworden.

Im Jahr 2024 wird das gesamte globale Datenvolumen voraussichtlich 180 Zettabytes (180x10¹⁵ GB) überschreiten, wobei Rechenzentren eine entscheidende Rolle bei der Verwaltung dieses sich ständig ausweitenden digitalen Universums spielen. Bis 2025 wird es weltweit mehr als 8 000 große Rechenzentren geben, die zusammen fast 2 % des weltweiten Stromverbrauchs ausmachen - eine Zahl, die mit der zunehmenden Bedeutung von künstlicher Intelligenz, Cloud Computing und Edge-Technologien weiter wächst.

Um den reibungslosen Betrieb dieser unternehmenskritischen Einrichtungen zu gewährleisten, sind eine sorgfältige Planung, eine hochwertige Infrastruktur und fortschrittliche Kühlungs- und Energieverwaltungssysteme unerlässlich. Trotz rigoroser Technik sind Rechenzentren jedoch einer Reihe von Risiken ausgesetzt, darunter Stromausfälle, Überhitzung, Cyber-Bedrohungen

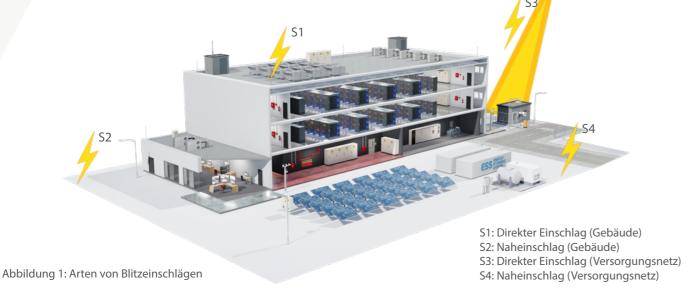
und Hardware-Ausfälle, die zu erheblichen finanziellen Verlusten und Serviceunterbrechungen führen können. Die proaktive Identifizierung dieser Risiken und die Implementierung robuster Strategien zur Risikominderung während der Planungsund Betriebsphase sind entscheidend für die Gewährleistung von Effizienz, Sicherheit und Nachhaltigkeit im digitalen Zeitalter.

Moderne Rechenzentren bilden das Rückgrat der globalen digitalen Infrastruktur und ermöglichen Cloud Computing, KI-gesteuerte Analysen und Echtzeitkommunikation. Da der Strombedarf mit durchschnittlich 32 Megawatt pro Einrichtung, was der Stromversorgung einer Stadt mit 25 000 Einwohnern entspricht, rasant ansteigt, ist ein unterbrechungsfreier Betrieb nicht verhandelbar

Diese Einrichtungen sind jedoch zunehmenden Risiken durch Überspannungen, Blitzeinschlägen und Netzinstabilitäten ausgesetzt, welche die Langlebigkeit der Geräte, die Datenintegrität und die Betriebskontinuität gefährden.

Doch wie lassen sich potenzielle Gefahrenquellen erkennen? Und vor allem: Welche Maßnahmen können ergriffen werden, um einen optimalen Schutz zu erreichen?

DIE NORMEN


Die Blitzschutzvorschrift ÖVE/ÖNORM EN 62305 ist die in Österreich verwendete Normenreihe, welche die Grundsätze für den Schutz von Bauwerken, elektrischen Anlagen und Personen vor Blitzeinwirkungen definiert. Diese Norm bietet die Grundlage für die Planung umfassender Blitzschutzsysteme (LPS), einschließlich äußerer und innerer Schutzmaßnahmen.

Die internationale Normenreihe IEC 61643 - "Überspannungsschutzgeräte für Niederspannung" befasst sich mit der Leistung, Prüfung, Auswahl und Anwendung von SPDs (Surge Protective Devices), die in Niederspannungsstrom- und -signalanlagen eingesetzt werden. Sie enthält Anforderungen für Geräte zum Schutz gegen transiente Überspannungen, die durch Blitzschlag und Schaltvorgänge in Wechsel-, Gleich-, Photovoltaik- und Telekommunikationssystemen verursacht werden. Diese Normenreihe gewährleistet einen koordinierten Überspannungsschutz auf allen Ebenen der elektrischen Anlagen.

SCHUTZKONZEPTE

Ein wesentliches Risiko in Rechenzentren sind die negativen Auswirkungen von Blitzeinschlägen und Überspannungen. Während die Wahrscheinlichkeit eines direkten Blitzeinschlags in die Anlagenstruktur (Szenario S1 in Abbildung 1) je nach Standort und Exposition relativ gering ist, kann ein solches Ereignis dennoch Blitzteilströme von mehreren tausend Ampere

in die Verkabelung der Anlage induzieren. Häufiger kommt es zu Blitzeinschlägen in der Nähe des Kraftwerks (S2), in der Nähe von Freileitungen (S4) oder im vorgelagerten Verteilnetz (S3). In diesen Fällen können Überspannungen durch induktive und/oder resistive Kopplung oder eine Erhöhung des Erdpotentials in das System eingespeist werden.

BLITZSCHUTZZONEN

Im Rahmen der ÖVE/ÖNORM EN 62305 ist ein umfassendes Blitzschutzsystem in klar definierte Zonen unterteilt, die zusammenarbeiten, um ein Rechenzentrum sowohl vor direkten Einschlägen als auch vor sekundären Überspannungseffekten zu schützen. Die äußere Schutzzone umgibt die Anlage mit Hilfe von Blitzableitern und der Rolling-Ball-Methode. Diese Zone fängt die volle Kraft eines Blitzeinschlags ab, leitet die energiereiche Überspannung sicher zur Erde und verhindert, dass der Einschlag die Gebäudestruktur erreicht. Genau innerhalb dieser Grenze liegt die Zwischenzone (oder Interzone), in der die Intensität eines Blitzeinschlags zwar reduziert ist, aber immer noch elektromagnetische Impulse und transiente

Überspannungen induzieren kann. In dieser Zwischenzone werden zusätzliche Maßnahmen - wie sekundäre Überspannungsschutzgeräte, ordnungsgemäße Erdung und Verkabelung - eingesetzt, um die Restenergie abzuschwächen, bevor sie empfindliche elektronische Systeme im Rechenzentrum beeinträchtigen kann. Zusammen bieten diese Schichten einen koordinierten Schutz: Die äußere Zone bewältigt die schwersten Überspannungen am Eintrittspunkt, während die Inneren Zonen die verbleibenden Störungen abmildert, um den ununterbrochenen Betrieb und die Sicherheit der kritischen IT-Infrastruktur zu gewährleisten.

Äußere Zone LPZ 0 LPZ 0A: Gefahr durch direkte Blitzeinschläge LPZ 0B: Geschützt gegen direkte Blitzeinschläge

Innere Zonen

LPZ 1: Stoßströme werden durch Stromteilung oder SPDs an

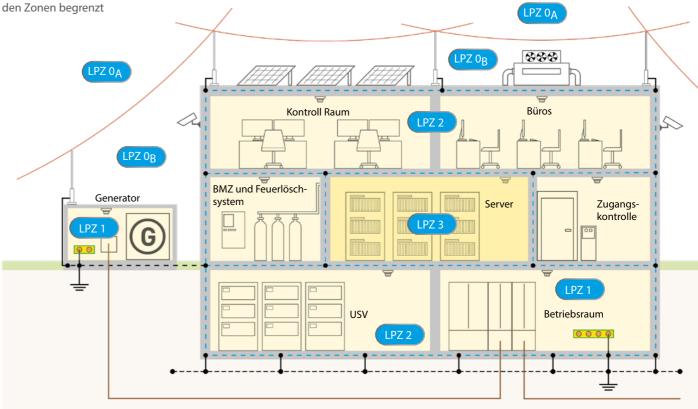


Abbildung 2: Blitzschutzzonen-Konzept

RICHTLINIEN

Die Planung, der Bau und der Betrieb von Rechenzentren unterliegen einem umfassenden Rahmen internationaler und regionaler Normen, um Zuverlässigkeit, Sicherheit und Effizienz zu gewährleisten. Diese Normen definieren wesentliche Anforderungen an die Stromversorgungsinfrastruktur, Umweltkontrollen, Telekommunikation und das allgemeine Risikomanagement und helfen den Betreibern, potenzielle Gefahren für die Betriebszeit und die Kontinuität der Dienste zu minimieren. Rechenzentren müssen so ausgelegt sein, dass sie den Risiken von Blitzeinschlägen und Überspannungsereignissen standhalten.

Die ÖVE/ÖNORM EN 62305-Reihe bietet einen anerkannten Rahmen für den Blitzschutz, der die Sicherheit und Betriebskontinuität kritischer IT-Infrastrukturen unter extremen Bedingungen gewährleistet.

Die internationale Normenreihe IEC 61643 definiert die Anforderungen, die Prüfung und die Anwendung von Überspannungsschutzgeräten (Surge Protective Devices, SPDs) für eine Vielzahl elektrischer und elektronischer Systeme, einschließlich Wechselstrom, PV-Anlagen, Gleichstromnetze und Telekommunikation. SPDs sind unerlässlich, um empfindliche Geräte vor transienten Überspannungen zu schützen, die durch Blitzeinschläge, Schaltvorgänge und Netzstörungen verursacht werden. Die Einhaltung der Normenreihe IEC 61643, vor allem die Teile bezüglich der Bauteilauswahl und der

Anwendungsgrundsätze, ist entscheidend für die Gewährleistung der Systemzuverlässigkeit, der Langlebigkeit der Geräte und der Betriebskontinuität, wodurch Ausfallzeiten reduziert und kostspielige Ausfälle in kritischen Infrastrukturen verhindert werden.

LPZ 2: Stoßströme werden durch Stromteilung oder SPDs in

LPZ 3: Es verbleiben nur noch energiearme Restspannungsspitzen, die an diesem Übergang herausgefiltert werden.

den Zonen weiter begrenzt

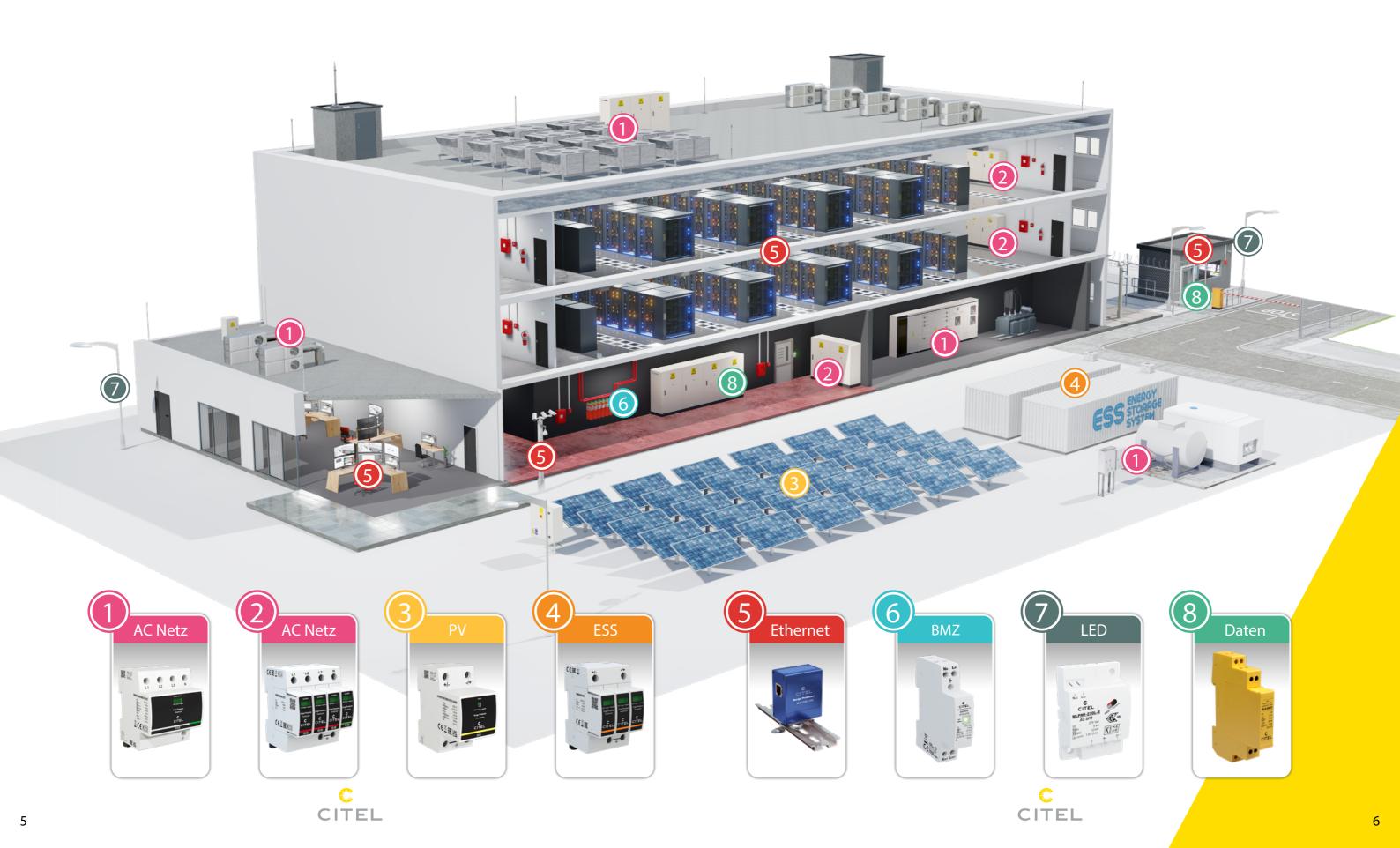
SPD Klassifizierung nach Blitzschutzzonen, die aus der ÖVE/ÖNORM EN 62305 kommen (LPZ):

LPZ 0/1:

Typ 1 SPD (T1): Bewältigt direkte/indirekte Blitzströme, getestet mit einem 10/350-µs-Impuls, mit Impulsentladungsfähigkeit (limp), verwendet für AC-, PV- und DC-Systeme. Für Datenleitungen: SPD-Klassifizierung D1.

LPZ 1/2:

Typ 2 SPD (T2): Schützt gegen eingekoppelte Überspannungen durch Schalthandlungen oder nahegelegene Blitzeinschläge, geprüft mit einem 8/20µs-Impuls, Nennableitstoßstrom (In), verwendet für AC, PV, DC. Für Datenleitungen: SPD-Klassifizierung C2.


LPZ 2/3:

Typ 3 SPD (T3): Feinschutz für empfindliche Geräte, getestet mit kombinierten Wellenformen von 1,2/50μs (Spannung) und 8/20μs (Strom), bewertet nach Leerlaufspannung (Uoc), für AC, PV, DC. Für Datenleitungen: SPD-Klassifizierung C1.

EXEMPLARISCHER AUFBAU EINES MODERNEN RECHENZENTRUMS.

PRODUKT AUSWAHL - AC

PRODUKT AUSWAHL - PV

DACN1-25CVG Serie

AC Kombi-Ableiter Typ 1+2+3

- "VG-Technology"
- Optimiert f
 ür TOV
- Keine Alterung durch Betriebs- und Leckströme (VG-Technology)
- Kein Folgestrom
- Fernsignalisierung
- Blitzimpulszähler (optional)
- IEC 61643-11 und EN 61643-11 zertifiziert

Art. Bezeichnung	DACN1-25CVGS-31-275	DACN1-25CVGS-31-275/SC
Uc	275 Vac	275 Vac
limp / Pol	25 kA	25 kA
limp total	100 kA	100 kA
In / Pol	25 kA	25 kA
Up	< 1,5 kV	< 1,5 kV
Art. Nr.	64135	64136

DAC50VG Serie

AC Kombi-Ableiter Typ 2+3

- Optimiert f
 ür TOV
- Thermische Trennvorrichtung
- Keine Alterung durch Betriebs- und Leckströme (VG-Technology)
- · Kein Folgestrom
- · Steckbare Schutzmodule
- Fernsignalisierung
- IEC 61643-11 und EN 61643-11 zertifiziert

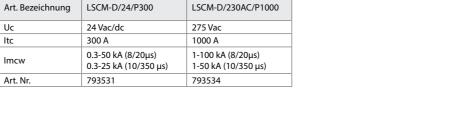
Art. Bezeichnung	DAC50VG-11-275	DAC50VG-31-275	DAC50S-40-440
Uc	275 Vac	275 Vac	440 Vac
In / Pol	20 kA	20 kA	20 kA
Imax / Pol	50 kA	50 kA	50 kA
Up	< 1,5 kV	< 1,5 kV	< 2 kV
Art. Nr.	821110242	821110244	821110424

DAC40CS Serie

AC SPD Typ 2		
•	5 Jahre Garantie	

- · Sehr kompakt
- · Thermische Trennvorrichtung
- · Kein Folgestrom
- Steckbare Schutzmodule
- Fernsignalisierung
- IEC 61643-11 und EN 61643-11 zertifiziert

Art. Bezeichnung	DAC40CS-11-275	DAC40CS-31-275	DAC40CS-40-440
Uc	275 Vac	275 Vac	440 Vac
In / Pol	20 kA	20 kA	20 kA
Imax / Pol	40 kA	40 kA	40 kA
Up	< 1,5 kV	< 1,5 kV	< 1,8 kV
Art. Nr.	821520221	821520222	821510422


LSCM-D Serie

7

Blitzimpulszähler

- OLED Frontdisplay für den Zugriff auf aufgezeichnete Ereignisse und Geräteparameter
- Spitzenwert- und Zeitstempelaufzeichnung der Stoßströme
- Kommunikationsschnittstelle RS485 / MODBUS-Protokoll
- Überwachungsfunktionen: 2 Eingänge (SPD oder Trennschalterstatus) / 1 Ausgang
- IEC 62561-6 konform

7 ii di Dezelerinang	Drie loes 11 275	DAC 1003 31 273	Drie loes lo 110
Uc	275 Vac	275 Vac	440 Vac
In / Pol	20 kA	20 kA	20 kA
Imax / Pol	40 kA	40 kA	40 kA
Up	< 1,5 kV	< 1,5 kV	< 1,8 kV
Art. Nr.	821520221	821520222	821510422

DPVN1-6CVG-21Y-1200 DPVN1-6CVG-21Y-1500

DC Kombi-Ableiter Typ 1+2+3

- · "CTC-Technology"
- · Galvanische Isolation
- Keine Alterung durch Betriebs- und Leckströme (VG-Technology)
- · Fernsignalisierung optional
- IEC 61643-31 und EN 61643-31 zertifiziert

Art. Bezeichnung	DPVN1-6CVG-21Y-1200	DPVN1-6CVG-21Y-1500
Ucpv	1200 Vdc	1500 Vdc
limp / Pol	6,25 kA	6,25 kA
Imax / Pol	40 kA	40 kA
Up (In)	< 4,3 kV	< 4,8 kV
Art. Nr.	65222102	65221103

DPVN40CVG-21Y-1200 DPVN40CVG-21Y-1500

DC Kombi-Ableiter Typ 2+3

- · "CTC-Technology"
- · Galvanische Isolation
- · Keine Alterung durch Betriebs- und Leckströme (VG-Technology)
- · Fernsignalisierung optional
- IEC 61643-31 und EN 61643-31 zertifiziert

Art. Bezeichnung	DPVN40CVG-21Y-1200	DPVN40CVG-21Y-1500
Ucpv	1200 Vdc	1500 Vdc
Imax / Pol	40 kA	40 kA
Up (In)	< 4,3 kV	< 4,8 kV
Art. Nr.	65121102	65121103

PRODUKT AUSWAHL - ESS

DC Typ 2 SPD

- Speziell entwickelt für Energiespeicher und EV-Ladesysteme
- Steckbare Schutzmodule
- · Fernsignalisierung
- prIEC 61643-41 konform

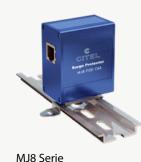
Art. Bezeichnung	DDC50S-21Y-500	DDC50S-21Y-1200	DDC50S-21Y-1500
Uc DC	500 Vdc	1200 Vdc	1500 Vdc
In / Pol	20 kA	20 kA	20 kA
lmax / Pol	50 kA	50 kA	50 kA
Up (In)	2,1 kV	3,6 kV	5,1 kV
Art. Nr.	828511263	828511563	828511663
			_

SFD Serie

Spezifische Sicherungen für den Kurzschlussschutzvon SPDs

- · Für Energiespeichersysteme
- Typ: NH1XL
- In Kombination mit CITEL DDC50-21Y
- · Fernsignalisierung und Fehleranzeige
- IEC 60269-6 konform

Art. Bezeichnung	SFD50S-10-1500DC
Uc DC	1500 Vdc
Sicherung	50 A gBat
Ausschaltvermögen	100 000 A
Art. Nr.	64137


Imcw

Art. Nr.

8

PRODUKT AUSWAHL - ETHERNET

SPD für Ethernet, POE, Daten und Telekommunikationstechnik

- Hochwertig geschirmtes Gehäuse mit 2 RJ45-Ports
- 2-stufige Schutzschaltung
- IEEE 802.3bt
- IEC 61643-21 und EN 61643-21 konform

Art. Bezeichnung	MJ8-C6A	MJ8-POE-C6A
Anwendung	10 Gigabit Ethernet	10 Gigabit Ethernet POE++
Anschluss	RJ45	RJ45
Uc	8 Vdc	60 Vdc
C2 (In) L/PE	2 kA	2 kA
D1 (limp)	500 A	500 A
C3 (Up) Ad./Ad.	< 20 V	< 70 V
Art. Nr.	581540	581541

CWMJ8-POE-6A

Outdoor Cat6A-PoE++ SPD

- POE++ kompatibel (IEEE 802.3bt) -10Gb (5-100m) mit Cat6A S/FTP-Verkabelung
- Geschirmte RJ45-Anschlüsse
- Außenanwendungen, IP66 (NEMA 4/4X)
- Kunststoffgehäuse, UL94-V0
- IEC 61643-21 und EN 61643-21-konform

Anwendung	10Gb PoE++ Ethernet
Uc	60 Vdc
D1 (limp)	500 A
C2 (In) Ad./PE	2 kA
C3 (Up) L/PE	70 V
Art. Nr.	581544

Art. Bezeichnung CWMJ8-POE-6A

SPD für Ethernet, POE, Daten und Telekommunikationstechnik

- Hochwertiges geschirmtes Gehäuse mit 12 oder 24 RJ45-Ports
- · 2-stufige Schutzschaltung
- IEEE 802.3bt
- IEC 61643-21 und EN 61643-21 konform

Art. Bezeichnung	PL12-CAT6	PL24-CAT6
Anwendung	1 Gigabit Ethernet	1 Gigabit Ethernet
Anschluss	RJ45	RJ45
Uc	8 Vdc	8 Vdc
C2 (In) L/PE	2 kA	2 kA
D1 (limp)	500 A	500 A
C3 (Up).	< 20 V	< 20 V
Art. Nr.	581534	581515

PRODUKT AUSWAHL - BRANDMELDETECHNIK

DDCCS Serie

Kompaktes DC SPD Typ 2

- Sehr kompakt
- · Thermische Trennvorrichtung
- · Kein Folgestrom
- Fernsignalisierung
- prIEC 61643-41 und IEC 61643-11

Art. Bezeichnung	DDC20CS-20-24	DDC20CS-20-38	DDC30CS-20-65
Uc DC	24 Vdc	38 Vdc	65 Vdc
In / Pol	10 kA	10 kA	15 kA
Imax / Pol	20 kA	20 kA	30 kA
Up	250 V	250 V	300 V
Art. Nr.	828210321	828210421	828310121

DACN1x Serie

Kompaktes, einphasiges SPD Typ 2 (oder 3) SPD

- · Kostengünstiger einphasiger Überspannungsschutz
- Typ 2 (oder 3) Monoblock
- 2-Port Konfiguration (Durchgangsverdrahtung)
- Fernsignalisierung
- IEC 61643-11 und EN 61643-11 konform

Art. Bezeichnung	DACN10S-21YG-275	DACN15S-P11-275
Uc DC	275 Vdc	275 Vdc
In / Pol	5 kA	5 kA
Imax / Pol	10 kA	15 kA
Up	1,5 kV	1,5 kV
Art. Nr.	70114022	70146022

PRODUKT AUSWAHL - LED BELEUCHTUNG Typ 2 (oder 3) SPD für LED

"VG-Technology"

· Anschluss über Federkraftklemmen

- Sehr kompakt

• Verfügbar für Schutzklasse I oder II

- Fehlersignalisierung
- · Stromkreistrennung im Fehlerfall
- IEC 61643-11 und EN 61643-11 konform

Art. Bezeichnung	MLPC-VG1-230L-R	MLPC-VG2-230L-R
Uc	275 Vac	275 Vac
In / Pol	5 kA	5 kA
IL	10 A	10 A
Up	1,5 kV	1,5 kV
Art. Nr.	836211	837211

MLPC-VG Serie

MLPM Serie

Typ 2 (oder 3) SPD für LED

- Verfügbar für Schutzklasse I oder II
- Sehr kompakt
- · Anschluss über Federkraftklemmen
- · Mechanische Fehlersignalisierung
- · Stromkreistrennung im Fehlerfall
- · ENEC / KEMA zertifiziert
- IEC 61643-11 und EN 61643-11 zertifiziert

Art. Bezeichnung	MLPM1-230L-R	MLPM2-230L-R
Uc	275 Vac	275 Vac
In / Pol	5 kA	5 kA
IL	10 A	10 A
Up	1,5 kV	1,5 kV
Art. Nr.	841211	842211

PRODU	KT AU	SWAHL	DATEN
-------	-------	--------------	-------

SPD für RS232, RS485, Stromschleife 4-20 mA, ADSL2 & VDSL2 etc.

- · Für alle MSR, Telekommunikationsund Datenanwendungen
- · Geschützter Schirm-Anschluss
- · Steckbares Schutzmodul
- · Erdung über DIN Hutschiene
- IEC 61643-21 und EN 61643-21 konf

	C
form	Α

Art. Bezeichnung	DLA-12D3	DLA-24D3	DLA-170
Anwendung	RS232 RS485	Stromschleife 4-20 mA	Analog
Konfig.	2 Adern + Schirm	2 Adern + Schirm	2 Adern + Schirm
Uc	15 V	28 V	170 V
D1 (limp)	5 kA	5 kA	5 kA
C2 (In)	5 kA	5 kA	5 kA
C3 (Up) L/PE	20 V	40 V	220 V
Art. Nr.	6402011	6403011	6406011

DLA Serie

DLC Serie

SPD für RS232, RS485, Stromschleife 4-20 mA, ADSL2 & VDSL2 etc.

- · Für alle MSR, Telekommunikationsund Datenanwendungen
- · Geschützter Schirm-Anschluss
- · Steckbares Schutzmodul
- · Erdung über DIN Hutschiene
- · IEC 61643-21 und EN 61643-21 konfor

Art. Bezeichnung	DLC-12D3	DLC-24D3	DLC-170
Anwendung	RS232 RS485	Stromschleife 4-20 mA	Analog
Konfig.	2 Adern + Schirm	2 Adern + Schirm	2 Adern + Schirm
Uc	15 V	28 V	170 V
D1 (limp)	2,5 kA	2,5 kA	2,5 kA
C2 (In)	5 kA	5 kA	5 kA
C3 (Up)	30 V	40 V	220 V
Art. Nr.	641102	641103	641105

CITEL

Head Office

France

Tel.:+33 1 41 23 50 23 e-mail:contact@citel.fr Web:www.citel.fr

Germany

Bochum

Tel.:+49 2327 6057 0 e-mail:info@citel.de Web:www.citel.de

Österreich Vertretung

KESS Power Solutions

3580 Horn

Tel.: +43 720 895010 0

Email: info@kess.at Web: www.kess.at

Zum KESS-Imagevideo